skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cao, Guanqun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract A fundamental problem in functional data analysis is to classify a functional observation based on training data. The application of functional data classification has gained immense popularity and utility across a wide array of disciplines, encompassing biology, engineering, environmental science, medical science, neurology, social science, and beyond. The phenomenal growth of the application of functional data classification indicates the urgent need for a systematic approach to develop efficient classification methods and scalable algorithmic implementations. Therefore, we here conduct a comprehensive review of classification methods for functional data. The review aims to bridge the gap between the functional data analysis community and the machine learning community, and to intrigue new principles for functional data classification. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and ClassificationStatistical Models > Classification ModelsData: Types and Structure > Time Series, Stochastic Processes, and Functional Data 
    more » « less